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Formulas for evaluating the temperature in a concrete slab subjected to plasma decorative finishing are 
obtained. The temperature fieMs in the slab are calculated for a real unit with allowance for the special 
f e ~ r e s  of  the technological process. 

At present, the majority of the works on the action of concentrated energy fluxes on materials have been 

carried out for metals [1, 2 ]; much fewer of them are devoted to nonmetallic materials and, in particular, to plasma 
treatment of building products. For hiD-quali ty and efficient thermal treatment of building structures and products 

made of ceramic materials, a number of requirements are imposed on the plasma heater: proximity of the discharge 
to the product heated, sufficient width of the discharge (> 0.1 m), transverse blowing of the discharge directed 
toward the product, a low gas velocity in the flame, shielding, and return of the thermal radiation of the electric 

arcs to the discharge region. The structure of a multiarc plasmatron with graphite electrodes meets all the 

enumerated requirements to the greatest degree [4 ]. 
Figure I presents a diagram of the head of a plasmatron that consists of annular and rod-shaped electrodes, 

between which a plasma-generating gas is supplied via an annular gap. 

The use of electric-arc heaters for the treatment of materials requires not only knowledge of their structural 

features and the conditions of discharge initiation and burning but also data on the thermal action of the plasma 

flame on the product treated. 
The present investigation seeks to study the heating of a body (a concrete slab) by a mobile multiarc 

plasmatron. 

In the work, consideration is given to a heat source of diameter 2r0 - 0.1 m that moves with a constant 
velocity v - 0.3 m/see  over the surface of a concrete slab of dimensions Lx x Ly x Lz " 6 x 1.2 x 0.3 m in the 

direction of its largest dimension. 

To obtain the dependences in finite form, we adopted the following assumptions: the distribution of the 
intensity of the heat flux q in the plasma flame obeys a Gaussian law, due to the small thickness of the melted 

layer (to 0.5 mm) we disregard the heat of the phase change in the concrete, the heat losses by the slab surface 
by radiation and free convection are small, and the thermal conductivity (A ffi 1.4 W/ (m-K))  and the thermal 

diffnsivity (Z " 0.8" 10 -6  m2/sex) are constant. 

Let us evaluate the main time parameters of the process of thermal treatment: 

t (1) = 2ro/V = 0.3 sex ; t~ 1) = (2 + 3) t() ) = = (0.7 + 1.0) sex ; 

t (f) = t~ 2) ~- r2/x = 3 -  10 a sex ; t(v 1) = Lx/v  = 20 sex ; 
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Fig. 1. Diagram of the plasmatron: I) annular electrode, 2) rod-shaped 

electrode, 3) gas flow, 4) multiarc discharge, 5) concrete slab. 

The results of comparing the indicated quantities suggest that the temperature field under the plasmatron 
is governed mainly by its velocity of motion and the heat removal into the depth of the slab. Thus, the problem of 
calculating the temperature is two-_dlmensional, in essence. 

As a model, we take a "thick" slab, for which we will calculate the stationary temperature field produced 
by the mobile source without regard for the effect of the boundaries of the slab. It is appropriate to solve this 

problem in coordinates attached to the moving source. We have the following initial equation and boundary 

conditions: 

v - -  fO2T O2T) (1) OT + x + = 0  

= q ( x ) ,  r (0 , )  = 0 .  (2)  - , l  -~z z=0 

The solution of this problem has the form [I ] 

Jr-GO 

T (x, ,) = f c (~, x, z) q ( 0  d~, (3) 

where 

is the Green function of boundary-value problem (2). 
In the general ease, it is possible to calculate integral (3) only by numerical methods. From a practical 

point of view, we restrict ourselves to asymptotic evaluations. In particular, by virtue of the integrability of the 
functions K0(~) and q(~), the absence of singularities of q(~) on the real axis, and the high velocities v under 

consideration we can replace the calculation of integral (3) by its asymptotic equivalent, using the behavior of the 

function K0(~) at large arguments. 
As a result, for a Gaussian heat source, we obtain the asymptotic value of the temperature in the far zone 

(x > 2r 0 and z ~ 0) 

209 



T ~ 

-4/2 -0.! 0 x 0.! 

Fig. 2. Temperature field in a concrete slab (Q = 50 kW; v = 0.3 m/see): 1) 

z = 0, 2) 1.25 mm, 3) 2.5.  T, ~ x, m. 

(v ) 
exp - (x + ~ )  / ' 1 ~ \  

T (x, z) - -2 -  ~'Z 
~ r  0 v (x 2 + 

and find the temperature profile on the treated surface (z = 0) 

T x, 0 ) = - T -  H - , , 2  exp - 

(4) 

(5) 

Here, the relation of the power to the intensity Q - ~r~qo for a Gaussian source is used. 

In expression (5), the product H - I / 2 ( x / r  O) exp ( - ( x / r o )  2) attains the maximum 2/~/e, which yields the 

value 

% = ,  _ qo 0 x . (6) 

for the maximum attainable temperature on the surface. Hence we can easily obtain the value of the minimum 
power transferred by the plasmatron to the slab that is required for the be~nning of surface fusion: 

Qmin = ~ ~" roTm �9 (7) 

For the above parameters of the material with Tm= 1700~ the minimum power is Qmin =~" 40 kW. 

From Fig. 2 it can be seen that the maximum of the temperature T,,ax in a thermocycle shifts rapidly to 

the region of negative values of x as z increases. Expression (4) enables us to find the position of the maximum of 

the temperature as well. We determine Xmax approximately by the formula Xmax = - v z2 /2Z ,  which on substitution 

into (4) yields the asymptotic law of decrease in the maximum temperature 

Tma x ( z) = -~ rOv~ " -~ 

According to a calculation by (8), at depths z >_ 4 mm the maximum temperature is lower than 150~ (for 

an initial temperature T O ffi 20~ Allowing for the short stay of the material at this temperature, we can assume 

that the mechanical properties of the slab treated are not impaired. 

In conclusion, we dwell on some technological features of the process of plasma treatment of building slabs. 

Because of the nonuniform distribution of the heat-flux density along the radius of the flame the slab is thermally 

treated with overlap so that the thickness of the melted layer remains approximately the same and equal to 0.5 

ram. With this fusion, the temperature in the slab can be evaluated using the principle of superposition of 
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temperature fields. Thus, with an overlap that is equal to the half-width of the flame r0, the fusion increases the 
temperature of the middle of a neighboring (yet to be fused) track to -Tmaxe - l  ~ (600-700)~ By the time the 

plasmatron returns to fuse this track (in 20 sec) the surface temperature will decrease to -VT--O7~xTmaxe -1 
(60-70)~ while in 5 sec it will decrease just to 160~ 

In other  words, the smaller the time of the reciprocating motion of the plasmatron, the higher the 

temperature of the material by the time of fusion and the greater the overheating of the structure. Experiment 
shows that peeling of the fused concrete occurs most frequently at the edges of the slab where the return time of 
the plasmatron is minimum. To increase the time of reciprocating motion, overshoot of the plasmatron onto 
stationary technological slabs is provided for in [4 ]. 

N O T A T I O N  

x, y, and z, coordinates of a point in the slab; ro, radius of the heat source; Lx, Ly, and Lz, length, width, 
and thickness of the slab, respectively; q(x, y) = qo exp ( - ( x  2 + y2) /~) ,  heat-flux density; ~ll, time of the 
temperature increase on the surface; t(z 1), time of cooling due to heat removal into the depth of the slab; t(x 2) and 

f~l: times of cooling due to redistribution of heat over the slab surface; r time of a single pass over the slab; 
complete cycle of thermal treatment; t(z 2), time of complete equalization of the temperature throughout the 

entire volume of the slab; v, velocity of plasmatron motion; Q, heat flux (power) from the flame into the slab; 
H_l/2(x/ro), Hermite function of half-integer order; T, temperature; Tin, melting point; K O, McDonald function 
of zero order; q0, density of the heat flux on the axis of the plasma source; e, base of natural logarithms. 
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